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COMMENT 

Mean field renormalisation group calculations for directed 
percolation on the square lattice 

K De’Bellt and T Lookmane 
t Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 355. 
$ Department of Physics, St Francis Xavier University, Antigonish, Nova Scotia, Canada 
B2G ICO. 

Received 18 July 1983, in final form I O  May 1984 

Abstrrct. A simple extrapolation technique for mean field renormalisation group calcula- 
tions is described. Application of this method to large cell calculations for percolation on 
the directed square lattice yields p ,  = 0.7067 f O.OOO1 (site problem) and pc  = 0.6454 f 0.0002 
(bond problem). 

It has previously been shown that the mean field renormalisation group (MFRG) method 
of Indekeu et a1 (1982) may be directly applied to percolation problems (De’Bell 1983). 
In this comment, extensions of the calculations for site and bond percolation on the 
directed square lattice to larger cells are reported and estimates of the critical probability 
pc obtained by extrapolation to the large cell limit are presented. 

In the variant of the MFRG described by De’Bell (1983) the percolation probability 
P at the origin is calculated for a cell of I d  sites, and sites neighbouring the cell are 
connected to a ghost site with probability b. Scaling requirements then lead to 

bP’( b’) = b‘P( b )  ( 1 )  
where primed and unprimed quantities refer to cells (symmetric about the origin) of 
different sizes. Solving ( 1 )  to leading order in b and 6’ yields recursion relations which 
are valid in the region of the critical point. De’Bell obtained the recursion relations 
for the bond and site percolation problems on the directed square lattice (with all 
parallel bonds directed in the same sense) for square ce!ls with axes parallel to the 
lattice bonds and 1 s 1 1. The fixed points p *  of these relations were consistent with 
the assumption that they should approach the critical probability p c  smoothly as the 
rescaling factor 11 I’ approached 1, in agreement with the results of Indekeu et a1 ( 1982) 
for the Ising model. However, the correlation length exponent vIl showed an initial 
tendency to move away from the expected value, this tendency reversing only for the 
largest cell considered. (Kinzel and Yeomans (1981) have shown that both a longi- 
tudinal and a transverse correlation length may be defined for directed percolation; 
however, only the longitudinal exponent v11 is relevant to our present analysis, cf 
Redner ( 1982).) 

The ‘transfer matrix’ method of Blease (1977) has been used to calculate the 
coefficient of 6 in P ( b )  for fixed values of p, the site (bond) occupation probability. 
By plotting these data as a function of p,  the fixed point value p = p* = p’  which satisfied 
( 1 ) to leading order in b( b‘) was determined for various pairs of cells. (This technique 
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leads to small statistical errors in the data but is necessary to minimise the computer 
memory used.) Two classes of square cells were considered: class (a)-those with 
axes parallel to the lattice bonds, and class (b)-those with axes at 45" to the lattice 
bonds. In all cases considered here, 1 and 1' in (1 )  refer to pairs of cells in the same 
class such that 1 immediately follows 1' in order of size and l / l '+  1 as l+m. 

Typical values of p *  and the corresponding estimate of 

vII = In(l/l')/ln(ap'/aplp*) 

for the site problem are shown in table 1 ; similar results were obtained for the bond 
problem. The values of p *  continue to approach the expected values of p c  smoothly 
as I /  l'+ 1. The values of viI also show an upward trend consistent with the assumption 
that they should approach the expected value; however, the variation in vIl with Il l '  
is rather slow. Moreover, the last ten values of vll obtained for cells in class (b) 
( l / l ' =  1.07-1.04) are scattered in the range 1.39iO.01 and no clear upward trend can 
be distinguished. We assume this is because the statistical errors in the estimates of 
In(dp'/aplp*) for ap'lap - 1 are of the same order of magnitude as the overall upward 
trend. As a result of these features it is not possible to make any reliable extrapolation 
of vlI to l / l ' =  1 from the data for ap ' /ap .  

Table 1. Sample values of the fixed point p* and correlation length exponent uII for the 
site problem for cells with axes ( a )  parallel to and ( 6 )  at 45" to the lattice bonds. 

(0 )  ( 6 )  
I /  I' P* Yll I /  I '  P* VI1 

1.286 0.6385" 1.261" 1.105 0.6589 1.373 
1.222 0.6471" 1.267" 1.074 0.6673 1.379 
1.182 0.6533 I .272 1.061 0.6713 1.389 
1.133 0.66 I8 1.287 1.05 I 0.6745 1.388 
1.105 0.6675 I .293 1.046 0.676 I 1.395 
1.087 0.67 17 1.298 I .043 0.6776 1.398 

a From exact recursion relations (De'Bell 1983). 

De'Bell (1983) has previously pointed out that the low values of vi/ obtained may 
be associated with the highly anisotropic nature of large clusters for directed percolation 
close to p c ,  and several authors have argued that anisotropic transformations should 
be employed to treat directed problems (Herrmann et a1 1983, Redner and Mueller 
1982 and references therein). (Cells in class (b) contain all sites that can be reached 
from the origin and are less than a given distance along the longitudinal ('preferred') 
direction. Thus the width of the cone of fluid flow (or sites connected to the origin) 
is independent of the edges of the cell. In this sense, cells in class (b) satisfy the 
criteria of Herrmann et a1 (1983).) Therefore, in the application of the finite size 
scaling analysis described below, we have adopted the central estimate of vIl = 1.73 
obtained from series expansions (De'Bell and Essam 1983). 

In order to motivate this analysis, we note that if 511<< 1 the probability that there 
is a pathway from the origin to a site adjacent to the cell, and hence the coefficient of 
b in P( b ) ,  is small. As P is increased, 511 approaches the distance of the sites connected 
to the ghost site from the origin and there is a rapid increase in the coefficient of b. 



MFRG calculations for directed percolation 2735 

Since it is this rapid increase in the coefficient of b which results in the fixed point we 
expect 

where i is the linear dimension of the cell if sites directly connected to the ghost site 
are included. Hence, for p* sufficiently close to po 

5,l( P*) i (2) 

i- I / y ~ ~  oc ( p c  - p*) .  (3) 

(Similar finite scaling analysis has been applied to Monte Carlo renormalisation group 
calculations for undirected percolation by Reynolds er a1 (1978, 1980).) 

The values of p* for the ten largest cells in class (b) were plotted against i-’/”Il by 
a least squares 
estimates of pc 

routine for both the site and bond problems (figure 1). The resulting 
are shown in table 2. 
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Figure 1. p *  against f-’/’’u with U,, = 1.73 for the site (a)  and bond ( b )  problems. 

Table 2. Estimates of pc  based on the ten data points closest to pc and variation of the 
central estimate with the number of data points ( N )  considered. 

N 
Bond problem Site problem 
P C  P C  

10 
9 
8 
7 
6 
5 

Seriest expansions 

~~ 

0.6454f 0.0002 
0.6453(5) 
0.6454(5) 
0.6455 
0.6457 
0.6457 
0.6446 f 0.0002 

~~ 

0.7067 f 0.0001 
0.7066 
0.7065( 5) 
0.7063 
0.7065 
0.7065 
0.7061 *0.0001 

t De’Bell and Essam 1983. 

For both problems considered the estimate of pc  obtained by our present method 
is slightly too high to be consistent with the estimate obtained from series expansions. 
However, it must be recalled that equation (3) is valid only for p* ‘sufficiently close’ 
to pc .  In the case of our present data the difference between p* for the largest cell 
considered and pc  is still large compared with the range of p spanned by our data 
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points and, in principle, equation (3) should be written in the form 

i-’lYlia(pE-p*)[l + ~ ( p , - p * )  + ~ ( p , - p * ) * ~  +. . .I (4) 

where A and B are constants and A ,  = 1.02 f 0.02 (e.g. Adler et a1 1983, cf also De’Bell 
et a1 1984). 

In an attempt to determine the effects of the correction terms in (4) we have 
performed a range of fit analysis by successively removing the data points farthest 
from p c  and fitting the remaining points to (3) (De’Bell et a1 1984) (table 2). Although 
the site problem results show a slight initial downward trend, both sets of results tend 
to vary about the value obtained with ten points, indicating that the statistical errors 
are of the same order as the overall curvature. Similarly attempts to include correction 
terms of the type indicated in (4) in our least squares fitting procedure were unable 
to obtain consistent results. As remarked previously, the range of p over which data 
points were available is small compared with the range over which we must extrapolate, 
and therefore the curvature due to the correction terms in the range of the available 
data may be expected to be small. 

In summary, extrapolations of data obtained from extended mean field renormalisa- 
tion group calculations for directed percolation on the square lattice, result in values 
of the critical probability which are slightly too high to be consistent with series 
expansion results. However, the inconsistency is small (60.1 %) and, since the transfer 
matrix method yields values of p* relatively distant from pc ,  may probably be attributed 
to the neglect of correction terms of the type indicated in (4). In view of our above 
comments, the extension of the MFRG method to large cells by Monte Carlo techniques 
would be of considerable interest and we hope that this report might stimulate interest 
in such an extension. 
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